Molecules (Nov 2023)

Advancements in Portable Voltammetry: A Promising Approach for Iron Speciation Analysis

  • Paolo Inaudi,
  • Ornella Abollino,
  • Monica Argenziano,
  • Mery Malandrino,
  • Caterina Guiot,
  • Stefano Bertinetti,
  • Laura Favilli,
  • Agnese Giacomino

DOI
https://doi.org/10.3390/molecules28217404
Journal volume & issue
Vol. 28, no. 21
p. 7404

Abstract

Read online

Iron, a crucial element in our environment, plays a vital role in numerous natural processes. Understanding the presence and concentration of iron in the environment is very important as it impacts various aspects of our planet’s health. The on-site detection and speciation of iron are significant for several reasons. In this context, the present work aims to evaluate the applicability of voltammetry for the on-site determination of iron and its possible speciation using a portable voltammetric analyzer. Voltammetry offers the advantage of convenience and cost-effectiveness. For iron (III) determination, the modification of a glassy carbon electrode (GCE) with an antimony-bismuth film (SbBiFE) using the acetate buffer (pH = 4) as a supporting electrolyte was used. The technique adopted was Square Wave Adsoptive Cathodic Stripping Voltammetry (SW-AdCSV), and we used 1-(2-piridylazo)-2-naphthol (PAN) as the iron (III) ligand. Linearity, repeatability, detection limit, and accuracy were determined using synthetic solutions; then, a Standard Reference Material (SRM) of 1643f Trace Elements in Water (iron content: 93.44 ± 0.78 µg L−1) was used for validation measurements in the real matrix. the accuracy of this technique was found to be excellent since we obtained a recovery of 103.16%. The procedure was finally applied to real samples (tap, lake, and seawater), and the results obtained were compared via Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). The amount of iron found was 207.8 ± 6.6 µg L−1 for tap water using voltammetry and 200.9 ± 1.5 µg L−1 with ICP-OES. For lake water, 171.7 ± 3.8 µg L−1, 169.8 ± 4.1 µg L−1, and 187.5 ± 5.7 µg L−1 were found using voltammetry in the lab both on-site and using ICP-OES, respectively. The results obtained demonstrate the excellent applicability of the proposed on-site voltammetric procedure for the determination of iron and its speciation in water.

Keywords