BMC Immunology (Nov 2024)
Darbepoetin alpha has an anxiolytic and anti-neuroinflammatory effect in male rats
Abstract
Abstract Aims We aimed to investigate the anxiolytic effect of darbepoetin alpha (DEPO), an erythropoietin derivative, in a neuroinflammation model regarding different behaviors and biological pathways. Methods Forty adult male Wistar albino rats were divided into four groups (control, LPS, DEPO, and DEPO + LPS). The rats were treated with 5 µg /kg DEPO once a week for four weeks, after which neuroinflammation was induced with 2 mg/kg lipopolysaccharide (LPS). The elevated plus maze, open-field, and light‒dark box tests were conducted to assess anxiety levels. Harderian gland secretions were scored via observation. Tumor necrosis factor alpha (TNF-α), Interleukin-1-beta (IL-1β), brain-derived growth factor (BDNF), serotonin, cortisol, total antioxidant/oxidant (TAS/TOS), and total/free thiol levels were measured in the prefrontal cortex, striatum, and serum. Results DEPO had a potent anxiolytic effect on both DEPO and DEPO + LPS groups. Compared to the control group, DEPO administration caused an increase in serotonin and BDNF levels and decreased basal cortisol and TNF-α levels in naive rats. IL-1β did not alter after DEPO administration in naive rats. Prophylactic DEPO treatment remarkably downregulated cortisol, IL-1β, and TNF-α in the DEPO + LPS group. In addition, prophylactic DEPO administration significantly attenuated the decrease in serotonin and BDNF levels in the DEPO + LPS group. Furthermore, DEPO ameliorated excessive harderian gland secretion in the DEPO + LPS group. Compared with those in the control group, the free thiol content in the serum increased after DEPO administration. No similar effect was seen in the DEPO + LPS group receiving prophylactic DEPO. TAS showed no difference among all experimental groups. DEPO administration increased TOS and OSI in the serum and prefrontal cortex but not in the striatum. This effect was not seen in the DEPO + LPS group. Conclusion Darbepoetin alpha had an anxiolytic effect on many physiological mechanisms in a neuroinflammation model and naive rats.
Keywords