Atmosphere (Jun 2023)

Comparison of Clouds and Cloud Feedback between AMIP5 and AMIP6

  • Yuanchong Zhang,
  • Zhonghai Jin,
  • Matteo Ottaviani

DOI
https://doi.org/10.3390/atmos14060978
Journal volume & issue
Vol. 14, no. 6
p. 978

Abstract

Read online

We examine the changes in clouds and cloud feedback between Phase 5 (AMIP5) and Phase 6 (AMIP6) of the Atmospheric Model Intercomparison Project. Each model is perturbed by uniformly increasing the sea surface temperature by 4 K. The simulated cloud fraction, the perturbed states and cloud radiative kernels are used to derive cloud feedback in the shortwave (SW), longwave (LW) and their sum (Net). Compared to AMIP5, the cloud fraction in AMIP6 increases by 9.1%, while the perturbation leads to a 0.25% decrease. The Net cloud feedback at the top of the atmosphere (TOA) is almost double (174%). Statistical tests support that this change is mainly due to an increase in the surface SW cloud feedback caused by optically thick, middle and low clouds. The contribution of the atmospheric Net component (12%) stems from the increase in the atmospheric LW cloud feedback, likely to play a role in weakening (strengthening) the northward (southward) meridional atmospheric energy transport, while the opposite is true for the surface LW and Net cloud feedback in the meridional oceanic energy transport. The substantial increase in cloud feedback at the TOA primarily contributes to the higher climate sensitivity. The cloud feedback spread in AMIP6 is comparable to that in AMIP5.

Keywords