Journal of Materials Research and Technology (Sep 2024)

A novel reinforced PLA locking compression plate to eliminate stress shielding using design for additive manufacturing

  • Abdulsalam A. Al-Tamimi,
  • Mehdi Tlija,
  • Abdullah Alhamidi,
  • Mustufa Haider Abidi,
  • Abdulrahman Al-Ahmari,
  • Saeed M. Al-Zahrani

Journal volume & issue
Vol. 32
pp. 2127 – 2139

Abstract

Read online

Orthopaedic trauma is a predominant cause of patient mortality and prompt surgical interventions. The locking compression plate (LCP) is widely regarded as a gold standard in treating bone fractures. However, current fixation materials, such as 316 L stainless steel (316 L SS) and titanium (Ti) alloys induce stress shielding. A novel design approach is considered to design the next generation of bone plates to minimize stress shielding through design for additive manufacturing principles. Embedding of 316 L SS sheets within the bone plate structure has improved the mechanical properties by 200% compared with PLA-only plate, resulting in a flexural modulus of 9.3 GPa, which is closer to the cortical bone range of 10–25 GPa. In contrast, commercial plates measured 51 GPa for Ti and 112 GPa for 316 L SS. The novel plates showed to have a lower economic and environmental impact than commercial ones. Additively manufactured bone plates are more sustainable and cost-effective than current commercial ones.

Keywords