Heliyon (Aug 2021)

Geosmin reduction by algaecide application to drinking water: field scale efficacy and mechanistic insights

  • David Hammond,
  • Anthony Murri,
  • Sergey Mastitsky,
  • Ziming Yang,
  • Roy Foster,
  • Linda Schweitzer

Journal volume & issue
Vol. 7, no. 8
p. e07706

Abstract

Read online

Ten years of field data from an Oklahoma drinking water utility were analyzed for the effects of an acid-stabilized, ionic copper algaecide/bactericide called EarthTec on geosmin concentrations in the water traveling by pipeline from the source lake to a water treatment plant. The data show that geosmin already present in the raw water is reduced more during periods of applying algaecide than when not. Median reduction in geosmin concentration from pipe intake to pipe outfall by natural degradation without addition of algaecide was 5.6 ng/L removed (56.7% reduction) and improved to 126 ng/L removed (83% reduction) during periods the algaecide was being dosed at 1 μL/L, equivalent to 0.06 mg/L as copper. A laboratory study to replicate the phenomenon at bench-scale showed that either the algaecide itself or its copper-free acidic carrier can be used to depress pH and drive a reaction converting geosmin to an odorless dehydration product, argosmin. Algaecides intuitively reduce the organisms that produce geosmin, but this study shows that geosmin already present in the water is also being reduced through chemical conversion to the odorless argosmin, representing a novel means of geosmin removal in drinking water.

Keywords