Heliyon (Sep 2024)

Effect of allyl isothiocyanate on 4-HNE induced glucocorticoid resistance in COPD and the underlying mechanism

  • WenLi Chang,
  • MengWen Wang,
  • WenTao Zhu,
  • TingTing Dai,
  • ZhiLi Han,
  • NianXia Sun,
  • DianLei Wang

Journal volume & issue
Vol. 10, no. 17
p. e37275

Abstract

Read online

Chronic obstructive pulmonary disease (COPD) is a progressive inflammatory condition, and its clinical management primarily targets bronchodilation and anti-inflammatory therapy. However, these treatments often fail to directly address the progression of COPD, particularly its associated glucocorticoid (GC) resistance. This study elucidates the mechanisms underlying GC resistance in COPD and explores the therapeutic potential of allyl isothiocyanate (AITC) in modulating MRP1 transport. We assessed the levels of the oxidative stress product 4-HNE, HDAC2 protein, inflammatory markers, and pulmonary function indices using animal and cell models of GC-resistant COPD. The cascade effects of these factors were investigated through interventions involving AITC, protein inhibitors, and dexamethasone (DEX). Cigarette smoke-induced oxidative stress in COPD leads to the accumulation of the lipid peroxidation product 4-HNE, which impairs HDAC2 protein activity and diminishes GC-mediated anti-inflammatory sensitivity due to disrupted histone deacetylation. AITC regulates MRP1, facilitating the effective efflux of 4-HNE from cells, thereby reducing HDAC2 protein degradation and restoring dexamethasone sensitivity in COPD. These findings elucidate the mechanism of smoking-induced GC resistance in COPD and highlight MRP1 as a potential therapeutic target, as well as the enormous potential of AITC for combined GC therapy in COPD, promoting their clinical applications.

Keywords