Colloids and Interfaces (Apr 2020)

Bentonite Nanoparticle Stability and the Effect of Fulvic Acids: Experiments and Modelling

  • Holger Seher,
  • Horst Geckeis,
  • Thomas Fanghänel,
  • Thorsten Schäfer

DOI
https://doi.org/10.3390/colloids4020016
Journal volume & issue
Vol. 4, no. 2
p. 16

Abstract

Read online

In this study, the critical coagulation concentration (CCC) for FEBEX bentonite colloids is determined by colloid coagulation studies under variation of pH, electrolyte concentration, and fulvic acid (GoHy-573FA) content. For CaCl2 electrolyte solution, a pH-independent Ca-CCC of 1 mmol L−1 is found. In the case of NaCl background electrolyte, a pH-dependent Na-CCC can be determined with 15 ± 5 mmol L−1 at pH 6, 20 ± 5 mmol L−1 at pH 7, 200 ± 50 mmol L−1 at pH 8, 250 ± 50 mmol L−1 at pH 9, and 350 ± 100 mmol L−1 at pH 10, respectively. The addition of 1 mg L−1 dissolved organic carbon in the form of fulvic acid (FA) increases the Ca-CCC to 2 mmol L−1. An association of FA with FEBEX bentonite colloids as surface coating can clearly be identified by scanning transmission X-ray microscopy (STXM). The experimental bentonite stability results are described by means of an extended DLVO (Derjaguin–Landau–Verwey–Overbeek) approach summing up hydration forces, short-range Born repulsion, van der Waals attraction, and electrical double layer repulsion. The measured zeta (ζ)-potential of the bentonite colloids is applied as platelet face electrokinetic potential and the edge electrokinetic potential is estimated by the combination of silica and alumina ζ-potential data in the ratio given by the FEBEX bentonite structural formula. Adjusting the montmorillonite face electrokinetic potential by a maximum of ±15.9 mV is sufficient to successfully reproduce the measured stability ratios. Due to the uncertainty in the ζ-potential measurement, only semiquantitative calculations of the stability ratio can be given.

Keywords