Reproductive Biology and Endocrinology (Nov 2023)
Nuclear-cytoplasmic asynchrony in oocyte maturation caused by TUBB8 variants via impairing microtubule function: a novel pathogenic mechanism
Abstract
Abstract Background TUBB8, a crucial gene encoding microtubule protein, plays a pivotal role in cellular processes. Deleterious TUBB8 variants have been shown to significantly hinder oocyte maturation. In this study, we conducted an in vitro investigation using TUBB8 mutant mouse oocytes to elucidate the pathogenic mechanisms of TUBB8 variants in oocyte nuclear and cytoplasmic maturation. Methods A mutant model was successfully established in mouse oocytes via microinjection to further investigate the effects of four novel discovered TUBB8 mutations on the nuclear and cytoplasmic maturation of mouse oocytes. Immunofluorescence and confocal microscopy were performed to observe the cortical polarity and spindle and of mutant oocytes. Active mitochondrial staining was performed to analyze mitochondrial distribution patterns. Endoplasmic reticulum and Ca2+ staining were conducted to assess ER distribution and cytoplasmic calcium ion concentration in oocytes. Results In mouse oocytes, TUBB8 variants (p.A313V, p.C239W, p.R251Q, and p.G96R) resulted in a reduction of the first polar body extrusion rate, disruption of spindle assembly, and abnormal chromosome distribution. Additionally, these variants induced oocyte organelle abnormalities, including anomalies in mitochondrial redistribution and endoplasmic reticulum stress compared to the wild-type. Conclusion Deleterious TUBB8 variants could disrupt microtubule function, affecting critical processes such as spindle assembly, chromosome distribution, and organelle rearrangement during oocyte meiosis. These disruptions culminate in compromised nuclear-cytoplasmic maturation, consequently giving rise to oocyte maturation defects.
Keywords