PLoS ONE (Jan 2013)

Identification of inter-organ vascular network: vessels bridging between organs.

  • Madoka Omae,
  • Norio Takada,
  • Shohei Yamamoto,
  • Hiroyuki Nakajima,
  • Thomas N Sato

DOI
https://doi.org/10.1371/journal.pone.0065720
Journal volume & issue
Vol. 8, no. 6
p. e65720

Abstract

Read online

Development and homeostasis of organs and whole body is critically dependent on the circulatory system. In particular, the circulatory system, the railways shuttling oxygen and nutrients among various organs, is indispensible for inter-organ humoral communication. Since the modern view of the anatomy and mechanics of the circulatory system was established in 17(th) century, it has been assumed that humoral factors are carried to and from organs via vascular branches of the central arteries and veins running along the body axis. Over the past few decades, major advances have been made in understanding molecular and cellular mechanisms underlying the vascularization of organs. However, very little is known about how each organ is linked by vasculature (i.e., inter-organ vascular networks). In fact, the exact anatomy of inter-organ vascular networks has remained obscure. Herein, we report the identification of four distinct vessels, V1(LP), V2(LP), V3(LP) and V4(LP), that bridge between two organs, liver and pancreas in developing zebrafish. We found that these inter-organ vessels can be classified into two types: direct and indirect types. The direct type vessels are those that bridge between two organs via single distinct vessel, to which V1(LP) and V2(LP) vessels belong. The indirect type bridges between two organs via separate branches that emanate from a stem vessel, and V3(LP) and V4(LP) vessels belong to this type. Our finding of V1(LP), V2(LP), V3(LP) and V4(LP) vessels provides the proof of the existence of inter-organ vascular networks. These and other yet-to-be-discovered inter-organ vascular networks may facilitate the direct exchange of humoral factors that are necessary for the coordinated growth, differentiation and homeostasis of the connected organs. It is also possible that the inter-organ vessels serve as tracks for their connected organs to follow during their growth to establish their relative positions and size differences.