Applied Sciences (Apr 2019)

Fashion Product Classification through Deep Learning and Computer Vision

  • Luca Donati,
  • Eleonora Iotti,
  • Giulio Mordonini,
  • Andrea Prati

DOI
https://doi.org/10.3390/app9071385
Journal volume & issue
Vol. 9, no. 7
p. 1385

Abstract

Read online

Visual classification of commercial products is a branch of the wider fields of object detection and feature extraction in computer vision, and, in particular, it is an important step in the creative workflow in fashion industries. Automatically classifying garment features makes both designers and data experts aware of their overall production, which is fundamental in order to organize marketing campaigns, avoid duplicates, categorize apparel products for e-commerce purposes, and so on. There are many different techniques for visual classification, ranging from standard image processing to machine learning approaches: this work, made by using and testing the aforementioned approaches in collaboration with Adidas AG™, describes a real-world study aimed at automatically recognizing and classifying logos, stripes, colors, and other features of clothing, solely from final rendering images of their products. Specifically, both deep learning and image processing techniques, such as template matching, were used. The result is a novel system for image recognition and feature extraction that has a high classification accuracy and which is reliable and robust enough to be used by a company like Adidas. This paper shows the main problems and proposed solutions in the development of this system, and the experimental results on the Adidas AG™ dataset.

Keywords