Chemical & Biomedical Imaging (Mar 2023)

Protease-Activatable Porphyrin Molecular Beacon for Osteoarthritis Management

  • Connor Walsh,
  • Maneesha A. Rajora,
  • Lili Ding,
  • Sayaka Nakamura,
  • Helal Endisha,
  • Jason Rockel,
  • Juan Chen,
  • Mohit Kapoor,
  • Gang Zheng

DOI
https://doi.org/10.1021/cbmi.3c00005
Journal volume & issue
Vol. 1, no. 1
pp. 66 – 80

Abstract

Read online

Despite the substantial burden posed by osteoarthritis (OA) globally, difficult challenges remain in achieving early OA diagnosis and adopting effective disease-modifying treatments. In this study, we use a biomolecular approach to address these limitations by creating an inherently theranostic molecular beacon whose imaging and therapeutic capabilities are activated by early pathological changes in OA. This platform comprised (1) a peptide linker substrate for metalloproteinase-13 (MMP-13), a pathological protease upregulated in OA, which was conjugated to (2) a porphyrin moiety with inherent multimodal imaging, photodynamic therapy, and drug delivery capabilities, and (3) a quencher that silences the porphyrin’s endogenous fluorescence and photoreactivity when the beacon is intact. In diseased OA tissue with upregulated MMP-13 expression, this porphyrin molecular beacon (PPMMP13B) was expected to undergo sequence-specific cleavage, yielding porphyrin fragments with restored fluorescence and photoreactivity that could, respectively, be used as a readout of MMP-13 activity within the joint for early OA imaging and disease-targeted photodynamic therapy. This study focused on the synthesis and characterization of PPMMP13B, followed by a proof-of-concept evaluation of its OA imaging and drug delivery potential. In solution, PPMMP13B demonstrated 90% photoactivity quenching in its intact form and robust MMP-13 activation, yielding a 13-fold increase in fluorescence post-cleavage. In vitro, PPMMP13B was readily uptaken and activated in an MMP-13 cell expression-dependent manner in primary OA synoviocytes without exuding significant cytotoxicity. This translated into effective intra-articular cartilage (to a 50 μm depth) and synovial uptake and activation of PPMMP13B in a destabilization of the medial meniscus OA mouse model, yielding strong fluorescence contrast (7-fold higher signal than background) at the diseased joint site. These results provide the foundation for further exploration of porphyrin molecular beacons for image-guided OA disease stratification, effective articular delivery of disease-modify agents, and OA photodynamic therapy.