BioMedical Engineering OnLine (Feb 2021)

Effect of different thermal stimuli on improving microcirculation in the contralateral foot

  • Weiyan Ren,
  • Liqiang Xu,
  • Xuan Zheng,
  • Fang Pu,
  • Deyu Li,
  • Yubo Fan

DOI
https://doi.org/10.1186/s12938-021-00849-9
Journal volume & issue
Vol. 20, no. 1
pp. 1 – 10

Abstract

Read online

Abstract Background The lower extremities of the body often suffer from impaired microcirculation, particularly in the elderly or people with underlying conditions such as diabetes. Especially for people suffering from peripheral vascular diseases, skin lesions or wearing an external fixator in one side of limbs, direct contact treatments are not suitable for them to improve microcirculation. Heating the contralateral limb has been reported to improve blood flow in the impaired limb. However, its effect on plantar microvascular responses has not been previously investigated. Thus, the aim of this study was to explore how heating by warm bath and infrared radiation affects the circulations in the contralateral foot. Twelve healthy adults participated in this study and were randomly assigned to either placing the left foot in a warm bath or exposing it to infrared radiation for 10 min intervention every other day. The skin temperature (Temp) and skin blood flow (SBF) in the second metatarsal head of the contralateral foot were measured before and after the intervention. Results The results showed that both Temp (Bath: from 29.05 ± 3.56 °C to 31.03 ± 4.14 °C; Infrared: from 29.98 ± 3.86 °C to 31.07 ± 3.92 °C) and SBF (Bath: from 62.26 ± 48.12 PU to 97.76 ± 63.90 PU; Infrared: from 63.37 ± 39.88 PU to 85.27 ± 47.62 PU) in the contralateral foot were significantly increased after heating in both tests (p < 0.05). However, the contralateral SBF increased for 5 min after heating in warm bath test, but only for 1 min in infrared radiation test. Conclusions The results of this study show that both heating methods are the effective at increasing contralateral Temp and SBF, but the warm bath has a stronger residual thermal effect.

Keywords