Energies (Jun 2020)

Controlling the Deformation of a Small Coal Pillar Retaining Roadway by Non-Penetrating Directional Pre-Splitting Blasting with a Deep Hole: A Case Study in Wangzhuang Coal Mine

  • Shixing Cheng,
  • Zhanguo Ma,
  • Peng Gong,
  • Kelong Li,
  • Ning Li,
  • Tuo Wang

DOI
https://doi.org/10.3390/en13123084
Journal volume & issue
Vol. 13, no. 12
p. 3084

Abstract

Read online

In longwall mining of coal mines, the large deformation of small pillar retaining roadways creates difficulties for the safe and efficient retreating of the mining panel. Based on the engineering background of a small coal pillar retaining roadway in Wangzhuang coal mine, pressure relief technology for non-penetrating directional pre-splitting blasting with a deep hole ahead was proposed. The influence of the non-penetrating fracture length on the pre-splitting effect was studied by numerical simulation. The results showed that the vertical stress in the coal pillar center, the small pillar retaining roadway deformation, and the energy accumulation on the pillar decreased with an increase in the non-penetrating fracture length. The vertical stress at the working face end increased with an increase in the non-penetrating fracture length. The field application and monitoring results indicated that non-penetrating directional pre-splitting blasting could effectively control the deformation of small pillar retaining roadways. The roof-to-floor and rib-to-rib maximum convergences of the 6208 tail entry were reduced by 53.66% and 52.62%, respectively, compared to the results with no blasting. The roadway section met the demands of mining panel high-efficiency retreating, thereby demonstrating the rationality of the technical and numerical simulation results. The research results shed light on the improvement of small coal pillar retaining roadway maintenance theory and technology.

Keywords