Scientific Reports (Feb 2022)

Deep learning based diagnosis for cysts and tumors of jaw with massive healthy samples

  • Dan Yu,
  • Jiacong Hu,
  • Zunlei Feng,
  • Mingli Song,
  • Huiyong Zhu

DOI
https://doi.org/10.1038/s41598-022-05913-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 10

Abstract

Read online

Abstract We aimed to develop an explainable and reliable method to diagnose cysts and tumors of the jaw with massive panoramic radiographs of healthy peoples based on deep learning, since collecting and labeling massive lesion samples are time-consuming, and existing deep learning-based methods lack explainability. Based on the collected 872 lesion samples and 10,000 healthy samples, a two-branch network was proposed for classifying the cysts and tumors of the jaw. The two-branch network is firstly pretrained on massive panoramic radiographs of healthy peoples, then is trained for classifying the sample categories and segmenting the lesion area. Totally, 200 healthy samples and 87 lesion samples were included in the testing stage. The average accuracy, precision, sensitivity, specificity, and F1 score of classification are 88.72%, 65.81%, 66.56%, 92.66%, and 66.14%, respectively. The average accuracy, precision, sensitivity, specificity, and F1 score of classification will reach 90.66%, 85.23%, 84.27%, 93.50%, and 84.74%, if only classifying the lesion samples and healthy samples. The proposed method showed encouraging performance in the diagnosis of cysts and tumors of the jaw. The classified categories and segmented lesion areas serve as the diagnostic basis for further diagnosis, which provides a reliable tool for diagnosing jaw tumors and cysts.