Water (Jan 2023)

Research on the Influence of Siltation Height of Check Dams the on Discharge Coefficient of Broad-Crested Weirs

  • Zhijian Wang,
  • Lili Gui,
  • Jiaxuan Zhang,
  • Yongye Li

DOI
https://doi.org/10.3390/w15030510
Journal volume & issue
Vol. 15, no. 3
p. 510

Abstract

Read online

With the continuous operation of check dams, the silting elevation of the whole dam gradually increases. When the silting height is close to the elevation of the broad-crested weir, it will result in a large change in the hydraulic characteristics of the original flow pattern. For subsequent reinforcement work, it is necessary to know how excessive sediment deposition affects the overflow from the broad-crested weir into the spillway. However, few studies about discharge coefficients are available in the case of spillways with sediment. In this paper, the hydraulic characteristics and discharge coefficient of a broad-crested weir whose width is 270 mm are investigated with physical experiments under different siltation heights and discharges. The research shows that: (1) With the increase in siltation height, the water level on the weir decreases and the drop of the flow becomes smaller. The overall flow pattern tends to the open-channel flow pattern. (2) In the same siltation height condition, the water surface profile along the broad-crested weir rises with the increase in discharge, and the surface velocity of the water in front of the weir increases with the increase in discharge. However, in the same discharge condition, the water surface profile along the broad-crested weir decreases with the increase in siltation height, and the surface velocity of the water in front of the weir gradually increases, which reflects that the increase in siltation height improves the overflow capacity of the broad-crested weir. (3) The present empirical formulas for the discharge coefficient have large errors when there is sediment accumulation. Therefore, a new formula for the discharge coefficient with sediment deposition is obtained using experimental data and its maximum relative error is 4.02%, which can provide a theoretical basis for risk elimination and reinforcement work on check dams in the Loess Plateau.

Keywords