Energies (Jan 2022)

Influence of Sweat on Joint and Sensor Reliability of E-Textiles

  • Martin Hirman,
  • Jiri Navratil,
  • Michaela Radouchova,
  • Jiri Stulik,
  • Radek Soukup

DOI
https://doi.org/10.3390/en15020506
Journal volume & issue
Vol. 15, no. 2
p. 506

Abstract

Read online

This article addresses reliability under the sweat of interconnection techniques for the mounting surface mounted device (SMD) components and fully printed humidity sensors onto conductive stretchable textile ribbons. Samples underwent testing for the effect of ageing by artificial sweat on their electrical resistance using both alkaline and acidic artificial sweat. The best results in terms of electrical resistance change were obtained for samples soldered to the conductive fibers interwoven in the ribbon. However, this method can damage the ribbon due to the high temperature during soldering and significantly reduce the mechanical properties and flexibility of the ribbon, which can lead to a limited service life of samples. On the other hand, adhesive bonding is a very interesting alternative, where the above-mentioned properties are preserved, but there is a significant effect of sweat ageing on electrical resistance. The results of fully printed graphene-based humidity sensors show that, for the intended use of these sensors (i.e., detection of changes in moisture on the human body), usage of the samples is possible, and the samples are sufficiently reliable in the case of sweat degradation. In addition, the response of the sensor to humidity is quite high: 98% at a relative humidity of 98%.

Keywords