Earth System Science Data (Aug 2012)

Database of diazotrophs in global ocean: abundance, biomass and nitrogen fixation rates

  • Y.-W. Luo,
  • S. C. Doney,
  • L. A. Anderson,
  • M. Benavides,
  • I. Berman-Frank,
  • A. Bode,
  • S. Bonnet,
  • K. H. Boström,
  • D. Böttjer,
  • D. G. Capone,
  • E. J. Carpenter,
  • Y. L. Chen,
  • M. J. Church,
  • J. E. Dore,
  • L. I. Falcón,
  • A. Fernández,
  • R. A. Foster,
  • K. Furuya,
  • F. Gómez,
  • K. Gundersen,
  • A. M. Hynes,
  • D. M. Karl,
  • S. Kitajima,
  • R. J. Langlois,
  • J. LaRoche,
  • R. M. Letelier,
  • E. Marañón,
  • D. J. McGillicuddy Jr.,
  • P. H. Moisander,
  • C. M. Moore,
  • B. Mouriño-Carballido,
  • M. R. Mulholland,
  • J. A. Needoba,
  • K. M. Orcutt,
  • A. J. Poulton,
  • E. Rahav,
  • P. Raimbault,
  • A. P. Rees,
  • L. Riemann,
  • T. Shiozaki,
  • A. Subramaniam,
  • T. Tyrrell,
  • K. A. Turk-Kubo,
  • M. Varela,
  • T. A. Villareal,
  • E. A. Webb,
  • A. E. White,
  • J. Wu,
  • J. P. Zehr

DOI
https://doi.org/10.5194/essd-4-47-2012
Journal volume & issue
Vol. 4, no. 1
pp. 47 – 73

Abstract

Read online

Marine N<sub>2</sub> fixing microorganisms, termed diazotrophs, are a key functional group in marine pelagic ecosystems. The biological fixation of dinitrogen (N<sub>2</sub>) to bioavailable nitrogen provides an important new source of nitrogen for pelagic marine ecosystems and influences primary productivity and organic matter export to the deep ocean. As one of a series of efforts to collect biomass and rates specific to different phytoplankton functional groups, we have constructed a database on diazotrophic organisms in the global pelagic upper ocean by compiling about 12 000 direct field measurements of cyanobacterial diazotroph abundances (based on microscopic cell counts or qPCR assays targeting the <i>nifH</i> genes) and N<sub>2</sub> fixation rates. Biomass conversion factors are estimated based on cell sizes to convert abundance data to diazotrophic biomass. The database is limited spatially, lacking large regions of the ocean especially in the Indian Ocean. The data are approximately log-normal distributed, and large variances exist in most sub-databases with non-zero values differing 5 to 8 orders of magnitude. Reporting the geometric mean and the range of one geometric standard error below and above the geometric mean, the pelagic N<sub>2</sub> fixation rate in the global ocean is estimated to be 62 (52&ndash;73) Tg N yr<sup>&minus;1</sup> and the pelagic diazotrophic biomass in the global ocean is estimated to be 2.1 (1.4&ndash;3.1) Tg C from cell counts and to 89 (43&ndash;150) Tg C from <i>nifH</i>-based abundances. Reporting the arithmetic mean and one standard error instead, these three global estimates are 140 &pm; 9.2 Tg N yr<sup>&minus;1</sup>, 18 &pm; 1.8 Tg C and 590 &pm; 70 Tg C, respectively. Uncertainties related to biomass conversion factors can change the estimate of geometric mean pelagic diazotrophic biomass in the global ocean by about &pm;70%. It was recently established that the most commonly applied method used to measure N<sub>2</sub> fixation has underestimated the true rates. As a result, one can expect that future rate measurements will shift the mean N<sub>2</sub> fixation rate upward and may result in significantly higher estimates for the global N<sub>2</sub> fixation. The evolving database can nevertheless be used to study spatial and temporal distributions and variations of marine N<sub>2</sub> fixation, to validate geochemical estimates and to parameterize and validate biogeochemical models, keeping in mind that future rate measurements may rise in the future. The database is stored in PANGAEA (<a href="http://dx.doi.org/10.1594/PANGAEA.774851"target="_blank">doi:10.1594/PANGAEA.774851</a>).