PLoS ONE (Jan 2023)

Development and validation of algorithms to build an electronic health record based cohort of patients with systemic sclerosis.

  • Ann-Marcia C Tukpah,
  • Jonathan A Rose,
  • Diane L Seger,
  • Paul F Dellaripa,
  • Gary M Hunninghake,
  • David W Bates

DOI
https://doi.org/10.1371/journal.pone.0283775
Journal volume & issue
Vol. 18, no. 4
p. e0283775

Abstract

Read online

ObjectivesTo evaluate methods of identifying patients with systemic sclerosis (SSc) using International Classification of Diseases, Tenth Revision (ICD-10) codes (M34*), electronic health record (EHR) databases and organ involvement keywords, that result in a validated cohort comprised of true cases with high disease burden.MethodsWe retrospectively studied patients in a healthcare system likely to have SSc. Using structured EHR data from January 2016 to June 2021, we identified 955 adult patients with M34* documented 2 or more times during the study period. A random subset of 100 patients was selected to validate the ICD-10 code for its positive predictive value (PPV). The dataset was then divided into a training and validation sets for unstructured text processing (UTP) search algorithms, two of which were created using keywords for Raynaud's syndrome, and esophageal involvement/symptoms.ResultsAmong 955 patients, the average age was 60. Most patients (84%) were female; 75% of patients were White, and 5.2% were Black. There were approximately 175 patients per year with the code newly documented, overall 24% had an ICD-10 code for esophageal disease, and 13.4% for pulmonary hypertension. The baseline PPV was 78%, which improved to 84% with UTP, identifying 788 patients likely to have SSc. After the ICD-10 code was placed, 63% of patients had a rheumatology office visit. Patients identified by the UTP search algorithm were more likely to have increased healthcare utilization (ICD-10 codes 4 or more times 84.1% vs 61.7%, p ConclusionEHRs can be used to identify patients with SSc. Using unstructured text processing keyword searches for SSc clinical manifestations improved the PPV of ICD-10 codes alone and identified a group of patients most likely to have SSc and increased healthcare needs.