Poultry Science (Dec 2023)

Effect of carnosine synthesis precursors in the diet on jejunal metabolomic profiling and biochemical compounds in slow-growing Korat chicken

  • Kasarat Promkhun,
  • Chanadda Suwanvichanee,
  • Nathawat Tanpol,
  • Sasikan Katemala,
  • Kanjana Thumanu,
  • Wittawat Molee,
  • Satoshi Kubota,
  • Pekka Uimari,
  • Amonrat Molee

Journal volume & issue
Vol. 102, no. 12
p. 103123

Abstract

Read online

ABSTRACT: The slow-growing Korat chicken (KR) has been developed to provide an alternative breed for smallholder farmers in Thailand. Carnosine enrichment in the meat can distinguish KR from other chicken breeds. Therefore, our aim was to investigate the effect of enriched carnosine synthesis, obtained by the β-alanine and L-histidine precursor supplementation in the diet, on changes to metabolomic profiles and biochemical compounds in slow-growing KR jejunum tissue. Four hundred 21-day-old female KR chickens were divided into 4 experimental groups: a group with a basal diet, a group with a basal diet supplemented with 1.0% β-alanine, 0.5% L-histidine, and a mix of 1.0% β-alanine and 0.5% L-histidine. The feeding trial lasted 70 d. Ten randomly selected chickens from each group were slaughtered. Metabolic profiles were analyzed using proton nuclear magnetic resonance spectroscopy. In total, 28 metabolites were identified. Significant changes in the concentrations of these metabolites were detected between the groups. Partial least squares discriminant analysis was used to distinguish the metabolites between the experimental groups. Based on the discovered metabolites, 34 potential metabolic pathways showed differentiation between groups, and 8 pathways (with impact values higher than 0.05, P < 0.05, and FDR < 0.05) were affected by metabolite content. In addition, biochemical changes were monitored using synchrotron radiation-based Fourier transform infrared microspectroscopy. Supplementation of β-alanine alone in the diet increased the β-sheets and decreased the α-helix content in the amide I region, and supplementation of L-histidine alone in the diet also increased the β-sheets. Furthermore, the relationship between metabolite contents and biochemical compounds were confirmed using principal component analysis (PCA). Results from the PCA indicated that β-alanine and L-histidine precursor group was highly positively correlated with amide I, amide II, creatine, tyrosine, valine, isoleucine, and aspartate. These findings can help to understand the relationships and patterns between the spectral and metabolic processes related to carnosine synthesis.

Keywords