Osteoarthritis and Cartilage Open (Jun 2024)
An interpretable knee replacement risk assessment system for osteoarthritis patients
Abstract
Objective: Knee osteoarthritis (OA) is a complex disease with heterogeneous representations. Although it is modifiable to prevention and early treatment, there still lacks a reliable and accurate prognostic tool. Hence, we aim to develop a quantitative and self-administrable knee replacement (KR) risk stratification system for knee osteoarthritis (KOA) patients with clinical features. Method: A total of 14 baseline features were extracted from 9592 cases in the Osteoarthritis Initiative (OAI) cohort. A survival model was constructed using the Random Survival Forests algorithm. The prediction performance was evaluated with the concordance index (C-index) and average receiver operating characteristic curve (AUC). A three-class KR risk stratification system was built to differentiate three distinct KR-free survival groups. Thereafter, Shapley Additive Explanations (SHAP) was introduced for model explanation. Results: KR incidence was accurately predicted by the model with a C-index of 0.770 (±0.0215) and an average AUC of 0.807 (±0.0181) with 14 clinical features. Three distinct survival groups were observed from the ten-point KR risk stratification system with a four-year KR rate of 0.79%, 5.78%, and 16.2% from the low, medium, and high-risk groups respectively. KR is mainly caused by pain medication use, age, surgery history, diabetes, and a high body mass index, as revealed by SHAP. Conclusion: A self-administrable and interpretable KR survival model was developed, underscoring a KR risk scoring system to stratify KOA patients. It will encourage regular self-assessments within the community and facilitate personalised healthcare for both primary and secondary prevention of KOA.