Biology (Mar 2022)

Cranial-Vertebral-Maxillary Morphological Integration in Down Syndrome

  • Marta Teresa García-García,
  • Pedro Diz-Dios,
  • María Teresa Abeleira-Pazos,
  • Jacobo Limeres-Posse,
  • Eliane García-Mato,
  • Iván Varela-Aneiros,
  • Mercedes Outumuro-Rial,
  • Márcio Diniz-Freitas

DOI
https://doi.org/10.3390/biology11040496
Journal volume & issue
Vol. 11, no. 4
p. 496

Abstract

Read online

Background: Morphological integration refers to the tendency of anatomical structures to show correlated variations because they develop in response to shared developmental processes or function in concert with other structures. The objective of this study was to determine the relationships between the dimensions of different cranial-cervical-facial structures in patients with Down syndrome (DS). Methodology: The study group consisted of 41 individuals with DS who had undergone cone-beam computed tomography (CBCT) at the Dental Radiology Unit of the University of Santiago de Compostela (Spain). In the historical archive of this same unit, 41 CBCTs belonging to individuals with no known systemic disorders or severe malformations of the maxillofacial region were selected, forming an age and sex-matched control group. Twenty-nine measurements were performed on each participant’s CBCT images, which were grouped into three blocks: atlantoaxial dimensions, craniovertebral dimensions and cephalometric dimensions. To determine whether there were significant differences between the dimensions obtained in the DS and control groups, we applied multiple analysis of variance and linear discriminant analysis tests. The analysis of the association between blocks (in pairs) was performed with the canonical correlation analysis test. Results: The dimensions evaluated in the three blocks of variables of individuals with DS differ significantly from those of nonsyndromic controls (p p p < 0.001). Conclusions: Our results confirm a very poor morphological integration of the cranial-cervical-maxillary complex in individuals with DS. This finding reinforces the proposal that gene overload enhances the channeling process.

Keywords