Scientific Reports (Aug 2024)
The potential of aptamers for the analysis of ceramic bound proteins found within pottery
Abstract
Abstract Archaeological pottery are the most numerous objects found during excavations and reflect the culinary practices of the past. However, their functionality for cooking/storing specific foods or drinks cannot be deduced solely from comparing their shapes and sizes. Analysis of protein residues bound to ceramics can reveal the protein/animal type through their amino acid sequence, thus enabling direct identification of food types. Therefore, the aim of our experimental study was to test sixteen aptamers for the analysis of proteinaceous organic residues found within the porous structure of pottery. Traditionally prepared archaeological ceramic replicas were cooked for 5 days in various food/protein suspensions, were UV aged, buried for a year, excavated, and extensively cleaned. Their shards were analysed using immunofluorescence microscopy with aptamers. Results show that eight aptamers (Clone1 and Kirby for egg residuals; seqU5 and BLG14 for milk residuals; HA for blood residuals; Gli4 for gluten residuals; Par1 for fish residuals; and D1 for collagen residuals) produced a successful/specific immunofluorescence microscopy result when they were hybridised to shards containing target protein residuals. Interestingly, on whole egg control samples, when the egg lysozyme-targeting aptamer Kirby was used, fluorescence intensity was 3.1 times greater compared to that observed with anti-ovalbumin antibodies.
Keywords