International Journal of Molecular Sciences (Mar 2018)

Regulation of Ion Transport in the Intestine by Free Fatty Acid Receptor 2 and 3: Possible Involvement of the Diffuse Chemosensory System

  • Atsukazu Kuwahara,
  • Yuko Kuwahara,
  • Toshio Inui,
  • Yoshinori Marunaka

DOI
https://doi.org/10.3390/ijms19030735
Journal volume & issue
Vol. 19, no. 3
p. 735

Abstract

Read online

The diffuse chemosensory system (DCS) is well developed in the apparatuses of endodermal origin like gastrointestinal (GI) tract. The primary function of the GI tract is the extraction of nutrients from the diet. Therefore, the GI tract must possess an efficient surveillance system that continuously monitors the luminal contents for beneficial or harmful compounds. Recent studies have shown that specialized cells in the intestinal lining can sense changes in the luminal content. The chemosensory cells in the GI tract belong to the DCS which consists of enteroendocrine and related cells. These cells initiate various important local and remote reflexes. Although neural and hormonal involvements in ion transport in the GI tract are well documented, involvement of the DCS in the regulation of intestinal ion transport is much less understood. Since activation of luminal chemosensory receptors is a primary signal that elicits changes in intestinal ion transport and motility and failure of the system causes dysfunctions in host homeostasis, as well as functional GI disorders, study of the regulation of GI function by the DCS has become increasingly important. This review discusses the role of the DCS in epithelial ion transport, with particular emphasis on the involvement of free fatty acid receptor 2 (FFA2) and free fatty acid receptor 3 (FFA3).

Keywords