Molecules (Aug 2023)

Medical Applications and Advancement of Near Infrared Photosensitive Indocyanine Green Molecules

  • Zulpya Mahmut,
  • Chunmei Zhang,
  • Fei Ruan,
  • Nan Shi,
  • Xinyao Zhang,
  • Yuda Wang,
  • Xianhong Zheng,
  • Zixin Tang,
  • Biao Dong,
  • Donghui Gao,
  • Jiao Sun

DOI
https://doi.org/10.3390/molecules28166085
Journal volume & issue
Vol. 28, no. 16
p. 6085

Abstract

Read online

Indocyanine green (ICG) is an important kind of near infrared (NIR) photosensitive molecules for PTT/PDT therapy as well as imaging. When exposed to NIR light, ICG can produce reactive oxygen species (ROS), which can kill cancer cells and pathogenic bacteria. Moreover, the absorbed light can also be converted into heat by ICG molecules to eliminate cancer cells. In addition, it performs exceptionally well in optical imaging-guided tumor therapy and antimicrobial therapy due to its deeper tissue penetration and low photobleaching properties in the near-infrared region compared to other dyes. In order to solve the problems of water and optical stability and multi-function problem of ICG molecules, composite nanomaterials based on ICG have been designed and widely used, especially in the fields of tumors and sterilization. So far, ICG molecules and their composite materials have become one of the most famous infrared sensitive materials. However, there have been no corresponding review articles focused on ICG molecules. In this review, the molecular structure and properties of ICG, composite material design, and near-infrared light- triggered anti-tumor, and antibacterial, and clinical applications are reviewed in detail, which of great significance for related research.

Keywords