Nanomaterials (Oct 2021)

Tip-Viscid Electrohydrodynamic Jet 3D Printing of Composite Osteochondral Scaffold

  • Kai Li,
  • Dazhi Wang,
  • Fangyuan Zhang,
  • Xiaoying Wang,
  • Hairong Chen,
  • Aibing Yu,
  • Yuguo Cui,
  • Chuanhe Dong

DOI
https://doi.org/10.3390/nano11102694
Journal volume & issue
Vol. 11, no. 10
p. 2694

Abstract

Read online

A novel method called tip-viscid electrohydrodynamic jet printing (TVEJ), which produces a viscous needle tip jet, was presented to fabricate a 3D composite osteochondral scaffold with controllability of fiber size and space to promote cartilage regeneration. The tip-viscid process, by harnessing the combined effects of thermal, flow, and electric fields, was first systematically investigated by simulation analysis. The influences of process parameters on printing modes and resolutions were investigated to quantitatively guide the fabrication of various structures. 3D architectures with high aspect ratio and good interlaminar bonding were printed, thanks to the stable fine jet and its predictable viscosity. 3D composite osteochondral scaffolds with controllability of architectural features were fabricated, facilitating ingrowth of cells, and eventually inducing homogeneous cell proliferation. The scaffold’s properties, which included chemical composition, wettability, and durability, were also investigated. Feasibility of the 3D scaffold for cartilage tissue regeneration was also proven by in vitro cellular activities.

Keywords