Journal of Chemistry (Jan 2016)

Preparation of Cathode-Anode Integrated Ceramic Filler and Application in a Coupled ME-EGSB-SBR System for Chlortetracycline Industrial Wastewater Systematic Treatment

  • Yuanfeng Qi,
  • Suqing Wu,
  • Fei Xi,
  • Shengbing He,
  • Chunzhen Fan,
  • Bibo Dai,
  • Jungchen Huang,
  • Meng Meng,
  • Xiangguo Zhu,
  • Lei Wang

DOI
https://doi.org/10.1155/2016/2391576
Journal volume & issue
Vol. 2016

Abstract

Read online

Chlortetracycline (CTC) contamination of aquatic systems has seriously threatened the environmental and human health throughout the world. Conventional biological treatments could not effectively treat the CTC industrial wastewater and few studies have been focused on the wastewater systematic treatment. Firstly, 40.0 wt% of clay, 30.0 wt% of dewatered sewage sludge (DSS), and 30.0 wt% of scrap iron (SI) were added to sinter the new media (cathode-anode integrated ceramic filler, CAICF). Subsequently, the nontoxic CAICF with rough surface and porous interior packed into ME reactor, severing as a pretreatment step, was effective in removing CTC residue and improving the wastewater biodegradability. Secondly, expanded granular sludge bed (EGSB) and sequencing batch reactor (SBR), serving as the secondary biological treatment, were mainly focusing on chemical oxygen demand (COD) and ammonia nitrogen (NH3-N) removal. The coupled ME-EGSB-SBR system removed about 98.0% of CODcr and 95.0% of NH3-N and the final effluent met the national discharged standard (C standard of CJ 343-2010, China). Therefore, the CTC industrial wastewater could be effectively treated by the coupled ME-EGSB-SBR system, which has significant implications for a cost-efficient system in CTC industrial systematic treatment and solid wastes (DSS and SI) treatment.