PLoS ONE (Jan 2021)

ODT FLOW: Extracting, analyzing, and sharing multi-source multi-scale human mobility.

  • Zhenlong Li,
  • Xiao Huang,
  • Tao Hu,
  • Huan Ning,
  • Xinyue Ye,
  • Binghu Huang,
  • Xiaoming Li

DOI
https://doi.org/10.1371/journal.pone.0255259
Journal volume & issue
Vol. 16, no. 8
p. e0255259

Abstract

Read online

In response to the soaring needs of human mobility data, especially during disaster events such as the COVID-19 pandemic, and the associated big data challenges, we develop a scalable online platform for extracting, analyzing, and sharing multi-source multi-scale human mobility flows. Within the platform, an origin-destination-time (ODT) data model is proposed to work with scalable query engines to handle heterogenous mobility data in large volumes with extensive spatial coverage, which allows for efficient extraction, query, and aggregation of billion-level origin-destination (OD) flows in parallel at the server-side. An interactive spatial web portal, ODT Flow Explorer, is developed to allow users to explore multi-source mobility datasets with user-defined spatiotemporal scales. To promote reproducibility and replicability, we further develop ODT Flow REST APIs that provide researchers with the flexibility to access the data programmatically via workflows, codes, and programs. Demonstrations are provided to illustrate the potential of the APIs integrating with scientific workflows and with the Jupyter Notebook environment. We believe the platform coupled with the derived multi-scale mobility data can assist human mobility monitoring and analysis during disaster events such as the ongoing COVID-19 pandemic and benefit both scientific communities and the general public in understanding human mobility dynamics.