Journal of Manufacturing and Materials Processing (Jun 2024)
The Machining and Surface Modification of H13 Die Steel via the Electrical Discharge Machining Process Using Graphite Mixed Dielectric
Abstract
Surface modification through electrical discharge machining (EDM) results in many advantages, such as improved surface hardness, enhanced wear resistance, and better micro-structuring. During EDM-based surface modification, either the eroding tool electrode or a powder-mixed dielectric can be utilized to add material onto the machined surface of the workpiece. The current study looks at the surface modification of H13 die steel using EDM in a dielectric medium mixed with graphite powder. The experiments were carried out using a Taguchi experimental design. In this work, peak current, pulse-on time, and powder concentration are taken into consideration as input factors. Tool wear rate (TWR), material removal rate (MRR), and the microhardness of the surface of the machined specimen are taken as output parameters. The machined surface’s microhardness was found to have improved by 159%. The results of X-ray diffraction (XRD) and energy dispersive X-ray spectroscopy (EDS) analysis and changes in MRR and TWR due to the powder-mixed dielectric are also discussed in detail.
Keywords