Advances in Difference Equations (May 2021)

A Neumann problem for a diffusion equation with n-dimensional fractional Laplacian

  • Martin P. Arciga-Alejandre,
  • Jorge Sanchez-Ortiz,
  • Francisco J. Ariza-Hernandez,
  • Eduard Garcia-Murcia

DOI
https://doi.org/10.1186/s13662-021-03413-w
Journal volume & issue
Vol. 2021, no. 1
pp. 1 – 10

Abstract

Read online

Abstract We study an initial-boundary value problem for a n-dimensional stochastic diffusion equation with fractional Laplacian on R + n $\mathbb{R}_{+}^{n}$ . In order to prove existence and uniqueness, we generalize the Fokas method to construct the Green function for the associated linear problem and then we apply a fixed point argument. Also, we present an example where the explicit solutions are given.

Keywords