Applied Sciences (May 2024)
Comparative Analysis of Energy Efficiency between Battery Electric Buses and Modular Autonomous Vehicles
Abstract
This paper presents the initial steps taken in analysing the benefits of connected autonomous vehicles (CAVs), especially Modular Autonomous Vehicles (MAVs), in search of sustainable solutions for reducing energy consumption per passenger in air transport. For this particular case, a Mobility-as-a-Service (MaaS) solution is proposed, correlating airside transport with landside transport, as an urban mobility alternative. To better understand the benefits of the proposal, this paper studies the impact on energy consumption conceptual differences between a conventional public transport fleet using Battery Electric Buses (BEBs) and an MAV fleet. Simulations for simple public transport tasks are performed to highlight the advantages of the modular vehicle concept, in which routes are assigned dynamically based on the requested passenger carrying capacity and travel distance, aiming to optimize the efficiency of the entire system. With a proven reduction in energy consumption due to better use of available passenger capacity and reduced travel times in which the vehicle is driving with a number of passengers less than half of its capacity, the concept can be addressed further in developing a predictive system that processes public transport data and delivers an optimized schedule for the entire fleet. The main goal being to improve overall operational efficiency and total cost of ownership, the second part of the paper studies the impact of weight distribution on efficiency parameters such as energy consumption, range, and overall performance of an electric bus. The impact on dynamic elements such as acceleration, braking, and cornering performance is analyzed, to assess the viability and safety of all types of electric bus operations.
Keywords