IEEE Access (Jan 2018)
Autonomous Clothes Manipulation Using a Hierarchical Vision Architecture
Abstract
This paper presents a novel robot vision architecture for perceiving generic 3-D clothes configurations. Our architecture is hierarchically structured, starting from low-level curvature features to mid-level geometric shapes and topology descriptions, and finally, high-level semantic surface descriptions. We demonstrate our robot vision architecture in a customized dual-arm industrial robot with our inhouse developed stereo vision system, carrying out autonomous grasping and dual-arm flattening. The experimental results show the effectiveness of the proposed dual-arm flattening using the stereo vision system compared with the single-arm flattening using the widely cited Kinect-like sensor as the baseline. In addition, the proposed grasping approach achieves satisfactory performance when grasping various kind of garments, verifying the capability of the proposed visual perception architecture to be adapted to more than one clothing manipulation tasks.
Keywords