Journal of Manufacturing and Materials Processing (Oct 2024)
Erosion Wear Behavior of HVAF-Sprayed WC/Cr<sub>3</sub>C<sub>2</sub>-Based Cermet and Martensitic Stainless Steel Coatings on AlSi7Mg0.3 Alloy: A Comparative Study
Abstract
The paper presents a comparative study of the erosion wear resistance of WC-10Co4Cr, Cr3C2-25NiCr and martensitic stainless steel (SS) coatings deposited onto an AlSi7Mg0.3 (Al) alloy substrate by high-velocity air‒fuel (HVAF) spraying. The influence of the abrasive type (quartz sand or granite gravel), erodent attack angle, thickness, and microhardness of the coatings on their and Al substrate’s wear resistance was comprehensively investigated under dry erosion conditions typical for fan blades. The HVAF-spraying process did not affect the Al substrate’s structure, except for when the near-surface layer was 20‒40 μm thick. This was attributed to the formation of a modified Al-Si eutectic with enhanced microhardness and strength in the near-substrate area. Mechanical characterization revealed significantly higher microhardness values for the cermet WC-10Co4Cr (~12 GPa) and Cr3C2-25NiCr (~9 GPa) coatings, while for the SS coating, the value was ~5.7 GPa. Erosion wear tests established that while Cr3C2-25NiCr and SS coatings were more sensitive to abrasive type, the WC-10Co4Cr coating exhibited significantly higher wear resistance, outperforming the alternatives by 2‒17 times under high abrasive intensity. These findings highlight the potential of HVAF-sprayed WC-10Co4Cr coatings for extending the service life of AlSi7Mg0.3-based fan blades exposed to erosion wear at normal temperatures.
Keywords