Scientific Reports (Dec 2022)

STAT3 suppression and β-cell ablation enhance α-to-β reprogramming mediated by Pdx1

  • Yuka Wakabayashi,
  • Takeshi Miyatsuka,
  • Masaki Miura,
  • Miwa Himuro,
  • Tomomi Taguchi,
  • Hitoshi Iida,
  • Yuya Nishida,
  • Yoshio Fujitani,
  • Hirotaka Watada

DOI
https://doi.org/10.1038/s41598-022-25941-5
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 9

Abstract

Read online

Abstract As diabetes results from the absolute or relative deficiency of insulin secretion from pancreatic β cells, possible methods to efficiently generate surrogate β cells have attracted a lot of efforts. To date, insulin-producing cells have been generated from various differentiated cell types in the pancreas, such as acinar cells and α cells, by inducing defined transcription factors, such as PDX1 and MAFA, yet it is still challenging as to how surrogate β cells can be efficiently generated for establishing future regenerative therapies for diabetes. In this study, we demonstrated that the exogenous expression of PDX1 activated STAT3 in α cells in vitro, and STAT3-null PDX1-expressing α cells in vivo resulted in efficient induction of α-to-β reprogramming, accompanied by the emergence of α-cell-derived insulin-producing cells with silenced glucagon expression. Whereas β-cell ablation by alloxan administration significantly increased the number of α-cell-derived insulin-producing cells by PDX1, STAT3 suppression resulted in no further increase in β-cell neogenesis after β-cell ablation. Thus, STAT3 modulation and β-cell ablation nonadditively enhance α-to-β reprogramming induced by PDX1, which may lead to the establishment of cell therapies for curing diabetes.