Actuators (Apr 2020)

Self-Healing and High Interfacial Strength in Multi-Material Soft Pneumatic Robots via Reversible Diels–Alder Bonds

  • Seppe Terryn,
  • Ellen Roels,
  • Joost Brancart,
  • Guy Van Assche,
  • Bram Vanderborght

DOI
https://doi.org/10.3390/act9020034
Journal volume & issue
Vol. 9, no. 2
p. 34

Abstract

Read online

In new-generation soft robots, the actuation performance can be increased by using multiple materials in the actuator designs. However, the lifetime of these actuators is often limited due to failure that occurs at the weak multi-material interfaces that rely almost entirely on physical interactions and where stress concentration appears during actuation. This paper proposes to develop soft pneumatic actuators out of multiple Diels–Alder polymers that can generate strong covalent bonds at the multi-material interface by means of a heat–cool cycle. Through tensile testing it is proven that high interfacial strength can be obtained between two merged Diels–Alder polymers. This merging principle is exploited in the manufacturing of multi-material bending soft pneumatic actuators in which interfaces are no longer the weakest links. The applicability of the actuators is illustrated by their operation in a soft hand and a soft gripper demonstrator. In addition, the use of Diels–Alder polymers incorporates healability in bending actuators. It is experimentally illustrated that full recovery of severe damage can be obtained by subjecting the multi-material actuators to a healing cycle.

Keywords