Virology Journal (Apr 2020)

Identification of novel human adenovirus candidates using the coxsackievirus and adenovirus receptor for cell entry

  • Kemal Mese,
  • Oskar Bunz,
  • Sebastian Schellhorn,
  • Wolfram Volkwein,
  • Dominik Jung,
  • Jian Gao,
  • Wenli Zhang,
  • Armin Baiker,
  • Anja Ehrhardt

DOI
https://doi.org/10.1186/s12985-020-01318-w
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Background There are over 100 known human adenovirus (HAdV) types, which are able to cause a broad variety of different self-limiting but also lethal diseases especially in immunocompromised patients. Only limited information about the pathogenesis and biology of the majority of these virus types is available. In the present study, we performed a systematic screen for coxsackievirus and adenovirus receptor (CAR)-usage of a large spectrum of HAdV types. Methods To study receptor usage we utilized a recombinant HAdV library containing HAdV genomes tagged with a luciferase and GFP encoding transgene. We infected CHO-CAR cells stably expressing the CAR receptor and to much information with tagged viruses (HAdV3, 14, 16, 50, 10, 24, 27, 37 and 69) and measured luciferase expression levels 26 and for some viruses (AdV10, − 24 and − 27) 52 h post-infection. As positive control, we applied human adenovirus type 5 (HAdV5) known to use the CAR receptor for cell entry. For viruses replication studies on genome level we applied digital PCR. Results Infection of CHO-CAR and CHO-K1 cells at various virus particle numbers per cell (vpc) revealed that HAdV10, 24, and 27 showed similar or decreased luciferase expression levels in the presence of CAR. In contrast, HAdV3, 14, 16, 50, 37 and 69 resulted in increased luciferase expression levels in our initial screening experiments. CAR usage of HAdV3, 14, 50, and 69 was not studied before, and therefore we experimentally confirmed CAR usage for these HAdV as novel viruses utilizing CAR as a receptor. To rule out that replication of HAdV in transduced CHO cells is responsible for increased transduction rates we performed replication assays on virus genome level, which revealed that there is no HAdV replication. Conclusion In the present study, we screened a HAdV library and identified novel human HAdV using the CAR receptor. To our knowledge, this is the first description of CAR usage for HAdV 3, 14, 50, and 69.

Keywords