Journal of Translational Medicine (Nov 2023)

Establishment and application of the BRP prognosis model for idiopathic pulmonary fibrosis

  • Xiaoyun Cheng,
  • Zhichao Feng,
  • Boyu Pan,
  • Qingxiang Liu,
  • Yuanyuan Han,
  • Lijun Zou,
  • Pengfei Rong,
  • Jie Meng

DOI
https://doi.org/10.1186/s12967-023-04668-5
Journal volume & issue
Vol. 21, no. 1
pp. 1 – 16

Abstract

Read online

Abstract Background Idiopathic pulmonary fibrosis (IPF) is the most common idiopathic interstitial lung disease. Clinical models to accurately evaluate the prognosis of IPF are currently lacking. This study aimed to construct an easy-to-use and robust prediction model for transplant-free survival (TFS) of IPF based on clinical and radiological information. Methods A multicenter prognostic study was conducted involving 166 IPF patients who were followed up for 3 years. The end point of follow-up was death or lung transplantation. Clinical information, lung function tests, and chest computed tomography (CT) scans were collected. Body composition quantification on CT was performed using 3D Slicer software. Risk factors in blood routine examination-radiology-pulmonary function (BRP) were identified by Cox regression and utilized to construct the “BRP Prognosis Model”. The performance of the BRP model and the gender-age-physiology variables (GAP) model was compared using time-ROC curves, calibration curves, and decision curve analysis (DCA). Furthermore, histopathology fibrosis scores in clinical specimens were compared between the different risk stratifications identified by the BRP model. The correlations among body composition, lung function, serum inflammatory factors, and profibrotic factors were analyzed. Results Neutrophil percentage > 68.3%, pericardial adipose tissue (PAT) > 94.91 cm3, pectoralis muscle radiodensity (PMD) ≤ 36.24 HU, diffusing capacity of the lung for carbon monoxide/alveolar ventilation (DLCO/VA) ≤ 56.03%, and maximum vital capacity (VCmax) 3 years; intermediate risk: TFS = 2–3 years; high risk: TFS ≈ 1 year). Patients with a high-risk stratification according to the BRP model had a higher fibrosis score on histopathology. Additionally, serum proinflammatory markers were positively correlated with visceral fat volume and infiltration. Conclusions In this study, the BRP prognostic model of IPF was successfully constructed and validated. Compared with the commonly used GAP model, the BRP model had better performance and generalization with easily obtainable indicators. The BRP model is suitable for clinical promotion.

Keywords