BMC Musculoskeletal Disorders (Mar 2022)
Three-dimensional reconstruction and virtual reposition of fragments compared to two dimensional measurements of midshaft clavicle fracture shortening
Abstract
Abstract Background Midshaft clavicle fracture shortening measurement is a reported key element for indication to surgical management and reporting of clinical trials. Determination of pre-fracture clavicle length for shortening measurement remains an unresolved issue. The purpose of the study was to assess accuracy of a novel technique of three-dimensional reconstruction and virtual reposition of bone fragments (3D-VR) for determination of pre-fracture clavicle length and measurement of shortening. Methods Accuracy of 3D-VR measurements was assessed using 5 synthetic bone clavicle fracture models. Measurements were compared between caliper and 3D-VR technique measurements. Correlation between 3D-VR and 2D measurements on standard radiographs was assessed on a cohort of 20 midshaft fractures. Four different methods for 2D measurements were assessed. Results Mean difference between caliper measurements and 3D-VR was 0.74 mm (95CI = − 2.51;3.98) (p = 0.56) on synthetic fracture models. Mean differences between 3D-VR and standard radiograph shortening measurement methods were 11.95 mm (95CI = 7.44;16.46) for method 1 (Jeray et al.) and 9.28 mm (95CI = 4.77;13.79) for method 2 (Smekal et al.) (p < 0.05). Differences were − 1.02 mm (95CI = − 5.53;3.48) for method 3 (Silva et al.) and − 2.04 mm (95CI = − 6.55;2.47) for method 4 (own method). Interobserver correlation ranged between 0.85 and 0.99. A false positive threshold of 20 mm was measured by the two observers in 25% of the case according to method of method 1, 30–35% with method 2, 15% with method 3 et al. and 5–10% with the method 4. Conclusion 3D VR is accurate in measuring midshaft clavicle fracture length and shortening. Two dimensional measurements may be used for approximation of clavicular shortening.
Keywords