Symmetry (Dec 2021)
Entropy Analysis for Cilia-Generated Motion of Cu-Blood Flow of Nanofluid in an Annulus
Abstract
In this study, a novel model of entropy generation effects measured in the Cu-blood flow of a nanofluid under the effect of ciliary-oriented motion is proposed. The effects of viscous dissipation are also taken into account. The physical model was composed with the incorporation of a low Reynolds number and long-wavelength phenomena. The exact solutions for the axial velocity, temperature and pressure gradient distribution were achieved successfully. Key findings are presented through a strategy of plotting the significant factors affecting the physical quantities of the stream. It was found that the heat absorption parameter and Brownian motion accounted for the large thermal transfer rate, while the effect of entropy was minimal compared to these factors in the center of the flow but increased on the walls in the case of Cu-blood flow. It can also be added that a more intense flow gave rise to the entropy effects. This study may be helpful in medical science as cilia play vital roles, which include cell migration and external fluid transport, in human tissues and some key organs. Moreover, the considered annulus-shaped geometry gives vital readings that are used in medical equipment such as endoscopes.
Keywords