Heliyon (Feb 2024)

A network pharmacology approach to reveal the key ingredients in Scrophulariae Radix (SR) and their effects against Alzheimer's disease

  • Yingying Shi,
  • Zhongqiang Chen,
  • Lixia Huang,
  • Yeli Gong,
  • Lu Shi

Journal volume & issue
Vol. 10, no. 3
p. e24785

Abstract

Read online

Background: Scrophulariae Radix (SR) is a commonly used medicinal plant. Alzheimer's disease (AD) is a neurodegenerative disease for which there is no effective treatment. This study aims to initially clarify the potential mechanism of SR in the treatment of AD based on network pharmacology and molecular docking techniques. Methods: The principal components and corresponding protein targets of SR were conducted by HPLC analysis and searched on TCMSP. AD targets were searched on DrugBank, Chemogenomics, TTD, OMIM and GeneCards databases. The compound-target network was constructed by Cytoscape3.8.2. The intersection of compound target and disease target was obtained and the coincidence target was imported into STRING database to construct a PPI network. We further performed GO and KEGG enrichment analysis on the targets. Meanwhile, molecular docking study and cell experiments were approved for the core target and the active compound. Results: Through multidatabase retrieval and integration, it was found that 17 components of SR could exert anti-AD effects against 40 targets. KEGG enrichment analysis indicated that Alzheimer's disease (hsa05010) was one of the most significant AD enrichment signalling pathways. Combined with the gene expression profile information in the AlzData database, 15 targets were found to be associated with tau or beta-amyloid protein (Aβ). GO analysis indicated that the primary molecular functions of SR in the treatment of AD were neurotransmitter receptor activity (GO:0007268), postsynaptic neurotransmitter receptor activity (GO:0070997), and acetylcholine receptor activity (GO:0050435). Moreover, we explored the anti-AD effects of SR extract and ursolic acid (UA) using SH-SY5Y cells. Treatment of SH-SY5Y cells with 20 μM UA significantly reduced the oxidative damage to these neuronal cells. Conclusion: This study reveals the active ingredients and potential molecular mechanism of SR in the treatment of AD, and provides a theoretical basis for further basic research and clinical application.

Keywords