Small Structures (Mar 2024)

Inspired by the Seeking Knowledge Strategy for Analects of Confucius to Screen Highly Electrochemically Active Porous Carbon: The Critical Source of Electroactive Sites

  • Liangcai Wang,
  • Xinhui Ma,
  • Dengyu Chen,
  • Jianbin Zhou,
  • Hengfei Qin,
  • Huanhuan Ma

DOI
https://doi.org/10.1002/sstr.202300329
Journal volume & issue
Vol. 5, no. 3
pp. n/a – n/a

Abstract

Read online

In this work, the forestry wastes are converted into a series of porous carbons using H3PO4 activation. These porous carbons feature a large specific surface area (1045.20 m2 g−1) and porosity that combines micro‐, meso‐, and macropores in various amounts depending on the fuel properties recorded for precursors used. Importantly, the C content recorded for forestry waste is one of the crucial factors in defining the specific surface area of the derived porous carbons. In addition, the total capacitance of the pine‐sawdust‐based porous carbon (PS‐C) sample is the highest, such as 220.55 F g−1 upon 5 mV s−1. Notably, the electrical double‐layer capacitance recorded for the samples remains essentially constant with increasing scan rates, such as ≈91.50 F g−1 for the olive‐shell‐based porous carbon, ≈123.70 F g−1 for PS‐C, and ≈105.66 F g−1 for the pine‐needle‐based porous carbon. Encouragingly, the pore‐associated sp3 site holds significant roles in the electrochemical application of the porous carbons. More importantly, the O/C value recorded for the precursor can be employed as a universal predictor of electrochemically active sites produced in porous carbons. In the findings, crucial insights are exhibited into the optimized fabrication of porous carbon with target electrochemically active sites for other applications such as catalysis.

Keywords