Tecnología en Marcha (Apr 2019)
Redes Neuronales Artificiales para la Predicción de la Masa Corporal de Pollos
Abstract
Dentro de un galpón avícola el ambiente térmico ejerce una gran influencia en el bienestar y la productividad de los animales. De esta manera, el propósito de este trabajo fue predecir la masa corporal de polluelos de 2 a 21 días de vida, sujetos a condiciones de confort y estrés calórico en diferentes intensidades (27; 30; 33 y 36 °C) y períodos de duración (1; 2; 3 y 4 días a partir del 2o día de vida) a través de redes neuronales artificiales (RNA). El experimento se llevó a cabo en Lavras, MG, Brasil. 210 pollitos de ambos sexos se utilizaron del 1 al 22 día de vida alojados en cuatro túneles de viento climatizados. Todos los días, todos los polluelos fueron pesados para acompañar su masa corporal. Las variables de entrada fueron: temperatura de bulbo seco del aire, duración del estrés térmico, edad de las aves y como variable de salida, la masa corporal diaria de los pollitos. Se obtuvo una base de datos de 840 observaciones, siendo 70% utilizado para el entrenamiento de la red, un 15% para la validación y un 15% para pruebas de modelos basados en RNA. Se demostró que las RNAs eran precisas para predecir la masa corporal de los pollitos sometidos a diferentes intensidades y duraciones de condiciones térmicas presentando un R2 de 0,9992 y error estándar de 5,23 G. Además, las RNAs propiciaron la simulación de varios escenarios, que pueden ayudar en la toma de decisiones con relación a la gestión, y pueden ser incorporados a los sistemas de control de calefacción.
Keywords