Applied Sciences (Jan 2024)

Stability of Silver-Nanowire-Based Flexible Transparent Electrodes under Mechanical Stress

  • Yoohan Ma,
  • Geon Woo Sim,
  • Sungjin Jo,
  • Dong Choon Hyun,
  • Jae-Seung Roh,
  • Dongwook Ko,
  • Jongbok Kim

DOI
https://doi.org/10.3390/app14010420
Journal volume & issue
Vol. 14, no. 1
p. 420

Abstract

Read online

Flexible transparent electrodes are integral to the advancement of flexible optoelectronic devices such as flexible displays and solar cells. However, indium tin oxide (ITO), a traditional material used in transparent electrodes, exhibits a significant increase in resistance under mechanical stress, which limits the long-term stability of flexible devices. Here, we prepare various types of silver nanowire (AgNW)-based transparent electrodes and investigate their stability in terms of electrical resistance and optical transmittance under compressive and tensile stresses. Under compressive stress, ITO on a polyethylene terephthalate (PET) substrate exhibits a significantly high electrical resistance of >3000 Ω after 1000 stress cycles, while the AgNW-coated electrode on a PET film exhibits a relatively smaller resistance of <1200 Ω. The AgNW-embedded electrode in a UV-curable polymer matrix (NOA63 or NOA71) exhibits an even lower electrical resistance of <450 Ω because AgNWs can easily maintain their network. A similar trend is observed under tensile stress. The AgNW-embedded electrode shows the highest resistance stability, whereas the ITO on the PET substrate shows the poorest stability. The optical transmittance is comparable regardless of the type of stress or electrode used. This superior stability of the AgNW-based electrodes, realized by integrating it with a polymer matrix, is promising for the development of durable and high-performance flexible optoelectronic devices.

Keywords