Frontiers in Cardiovascular Medicine (Apr 2024)

A novel approach for denoising electrocardiogram signals to detect cardiovascular diseases using an efficient hybrid scheme

  • Pingping Bing,
  • Wei Liu,
  • Zhixing Zhai,
  • Jianghao Li,
  • Zhiqun Guo,
  • Yanrui Xiang,
  • Binsheng He,
  • Lemei Zhu

DOI
https://doi.org/10.3389/fcvm.2024.1277123
Journal volume & issue
Vol. 11

Abstract

Read online

BackgroundElectrocardiogram (ECG) signals are inevitably contaminated with various kinds of noises during acquisition and transmission. The presence of noises may produce the inappropriate information on cardiac health, thereby preventing specialists from making correct analysis.MethodsIn this paper, an efficient strategy is proposed to denoise ECG signals, which employs a time-frequency framework based on S-transform (ST) and combines bi-dimensional empirical mode decomposition (BEMD) and non-local means (NLM). In the method, the ST maps an ECG signal into a subspace in the time frequency domain, then the BEMD decomposes the ST-based time-frequency representation (TFR) into a series of sub-TFRs at different scales, finally the NLM removes noise and restores ECG signal characteristics based on structural self-similarity.ResultsThe proposed method is validated using numerous ECG signals from the MIT-BIH arrhythmia database, and several different types of noises with varying signal-to-noise (SNR) are taken into account. The experimental results show that the proposed technique is superior to the existing wavelet based approach and NLM filtering, with the higher SNR and structure similarity index measure (SSIM), the lower root mean squared error (RMSE) and percent root mean square difference (PRD).ConclusionsThe proposed method not only significantly suppresses the noise presented in ECG signals, but also preserves the characteristics of ECG signals better, thus, it is more suitable for ECG signals processing.

Keywords