Heliyon (May 2024)
Characterization of a predictive signature for tumor microenvironment and immunotherapy response in hepatocellular carcinoma involving neutrophil extracellular traps
Abstract
Neutrophil extracellular traps (NETs) and other factors play a significant role in impacting the prognosis of patients with Hepatocellular carcinoma (HCC). Nevertheless, further research is warranted to fully elucidate the prognostic implications of NETs in patients with HCC. We employed a hierarchical clustering technique to examine the Cancer Genome Atlas-Liver Hepatocellular Carcinoma (TCGA-LIHC) data and identified subtypes associated with NETs. Subsequently, we utilized LASSO regression analysis to identify a distinct gene expression pattern within these subtypes. The strength of this signature was further validated through analysis of TCGA-LIHC and International Cancer Genome Consortium-Liver Cancer (ICGC-LIRI-JP) data. Our findings resulted in the construction of a six-gene signature related to NETs, which can predict survival outcomes in HCC patients. To enhance the predictive accuracy of our tool, we developed a nomogram that integrates the NETs signature with clinicopathological characteristics. We validated the significance of NETs in HCC patients using qRT-PCR and immunohistochemistry assays, along with in vitro experiments targeting high-risk genes. Furthermore, our exploration of the immune microenvironment uncovered augmented immune-specific metrics within the low-risk cohort, implying potential disparities in immune-related attributes between the high-risk and low-risk contingents. In summary, the NETs signature we discovered serves as a valuable biomarker and provides guidance for personalized therapy in HCC patients.