Frontier Materials & Technologies (Dec 2023)
Quantitative analysis of deformation texture and primary recrystallization after inclined rolling and annealing of the (Fe83Ga17)99B1 magnetostrictive alloy
Abstract
The Fe–Ga alloy is a promising magnetostrictive material thanks to of the optimal combination of functional properties and relatively low price due to the absence of rare-earth elements in the composition. To obtain the maximum magnetostriction in Fe–Ga polycrystals, it is necessary to create a crystallographic texture with a predominance of the direction, since the tetragonal magnetostriction constant is the largest. Traditional methods of thermomechanical treatment do not lead to the formation of such a texture in a bcc alloy. In this paper, for the first time, the authors propose to use inclined rolling to increase the proportion of favorable texture components. Warm rolling with a deformation degree of 70 % was carried out at angles of 0, 30 and 90° to the direction of hot rolling. The deformation texture was examined using X-ray texture analysis and the texture and structure of the material after recrystallization was analyzed by electron backscatter diffraction (EBSD) on a scanning electron microscope. Quantitative texture analysis was carried out using the orientation distribution function (ODF) method using the ATEX software. The volume fraction of some texture components was calculated. The study shows that a significant change in the deformation textures and primary recrystallization occurs during rolling at an angle of 90°. The sample after such rolling contains the largest amount of the planar component {100}. The study identified a relationship between the texture of deformation and recrystallization in Fe–Ga: to increase the proportion of components with the crystallographic direction during recrystallization, the presence of planar components {111} in the deformation texture is necessary, which is associated with the predominant growth of favorable components in the deformation matrix with such a texture.
Keywords