Research (Jan 2022)

Multifunctional GO Hybrid Hydrogel Scaffolds for Wound Healing

  • Xiaoya Ding,
  • Yunru Yu,
  • Chaoyu Yang,
  • Dan Wu,
  • Yuanjin Zhao

DOI
https://doi.org/10.34133/2022/9850743
Journal volume & issue
Vol. 2022

Abstract

Read online

Hydrogel dressings have received extensive attention for the skin wound repair, while it is still a challenge to develop a smart hydrogel for adapting the dynamic wound healing process. Herein, we develop a novel graphene oxide (GO) hybrid hydrogel scaffold with adjustable mechanical properties, controllable drug release, and antibacterial behavior for promoting wound healing. The scaffold was prepared by injecting benzaldehyde and cyanoacetate group-functionalized dextran solution containing GO into a collection pool of histidine. As the GO possesses obvious photothermal behavior, the hybrid hydrogel scaffold exhibited an obvious stiffness decrease and effectively promoted cargo release owing to the breaking of the thermosensitive C=C double bond at a high temperature under NIR light. In addition, NIR-assisted photothermal antibacterial performance of the scaffold could be also achieved with the local temperature rising after irradiation. Therefore, it is demonstrated that the GO hybrid hydrogel scaffold with vascular endothelial growth factor (VEGF) encapsulation can achieve the adjustable mechanical properties, photothermal antibacterial, and angiogenesis during the wound healing process. These features indicated that the proposed GO hybrid hydrogel scaffold is potentially valuable for promoting wound healing and other biomedical application.