Biomedicine & Pharmacotherapy (Jan 2019)
Cardio-protective and antioxidant properties of caffeic acid and chlorogenic acid: Mechanistic role of angiotensin converting enzyme, cholinesterase and arginase activities in cyclosporine induced hypertensive rats
Abstract
Caffeic acid (CAA) and chlorogenic acid (CHA) are important members of hydroxycinnamic acid with natural antioxidant and cardio-protective properties. The present study aimed to determine the effect of CAA and CHA on systolic blood pressure, heart rates (HR) as well as on the activity of the angiotensin-1-converting enzyme (ACE), acetylcholinesterase (AChE), butrylcholinesterase (BChE) and arginase in cyclosporine-induced hypertensive rats. Experimental rats were distributed into 7 groups (n = 6): normotensive control rats; hypertensive rats (induced rats) as well as hypertensive- treated groups with captopril (10 mg/kg/day), CAA (10 and 15 mg/kg/day) and CHA (10 and 15 mg/kg/day), respectively. The experiment lasted for 7 days and the systolic blood pressure (SBP) and heart rates were recorded using tail-cuff method. Oral administration of captopril, caffeic acid and chlorogenic acid normalized hypertensive effect caused by cyclosporine administration. CAA and CHA significantly (P < 0.05) reduced SBP and HR, activity of ACE, AChE, BChE and arginase in the treated hypertensive rats compared with cyclosporine induced-hypertensive rats. Likewise, CAA and CHA improved nitric oxide (NO) bioavailability, increased catalase activity and reduced glutathione content while malondialdehyde (MDA) level was reduced compared with cyclosporine hypertensive rats. Findings from this study shows that CAA and CHA exhibited blood pressure lowering properties and reduced activities of key enzymes linked to the pathogenesis of hypertension in cyclosporine-induced rats. These might be some of the possible mechanisms of action by which their cardio-protective properties are exhibited.