Journal of Imaging (Mar 2021)

Quantitative Comparison of Deep Learning-Based Image Reconstruction Methods for Low-Dose and Sparse-Angle CT Applications

  • Johannes Leuschner,
  • Maximilian Schmidt,
  • Poulami Somanya Ganguly,
  • Vladyslav Andriiashen,
  • Sophia Bethany Coban,
  • Alexander Denker,
  • Dominik Bauer,
  • Amir Hadjifaradji,
  • Kees Joost Batenburg,
  • Peter Maass,
  • Maureen van Eijnatten

DOI
https://doi.org/10.3390/jimaging7030044
Journal volume & issue
Vol. 7, no. 3
p. 44

Abstract

Read online

The reconstruction of computed tomography (CT) images is an active area of research. Following the rise of deep learning methods, many data-driven models have been proposed in recent years. In this work, we present the results of a data challenge that we organized, bringing together algorithm experts from different institutes to jointly work on quantitative evaluation of several data-driven methods on two large, public datasets during a ten day sprint. We focus on two applications of CT, namely, low-dose CT and sparse-angle CT. This enables us to fairly compare different methods using standardized settings. As a general result, we observe that the deep learning-based methods are able to improve the reconstruction quality metrics in both CT applications while the top performing methods show only minor differences in terms of peak signal-to-noise ratio (PSNR) and structural similarity (SSIM). We further discuss a number of other important criteria that should be taken into account when selecting a method, such as the availability of training data, the knowledge of the physical measurement model and the reconstruction speed.

Keywords