International Journal of Industrial Engineering and Production Research (Sep 2012)
A hybrid GRASP algorithm for minimizing total weighted resource tardiness penalty costs in scheduling of project networks
Abstract
In this paper, we consider scheduling of project networks under minimization of total weighted resource tardiness penalty costs. In this problem, we assume constrained resources are renewable and limited to very costly machines and tools which are also used in other projects and are not accessible in all periods of time of a project. In other words, there is a dictated ready date as well as a due date for each resource such that no resource can be available before its ready date but the resources are allowed to be used after their due dates by paying penalty cost depending on the resource type. We also assume, there is only one unit of each resource type available and no activity needs more than it for execution. The goal is to find a schedule with minimal total weighted resource tardiness penalty costs. For this purpose, we present a hybrid metaheuristic procedure based on the greedy randomized adaptive search algorithm and path-relinking algorithm. We develop reactive and non-reactive versions of the algorithm. Also, we use different bias probability functions to make our solution procedure more efficient. The computational experiments show the reactive version of the algorithm outperforms the non-reactive version. Moreover, the bias probability functions defined based on the duration and precedence relation characteristics give better results than other bias probability functions.