The Astrophysical Journal Letters (Jan 2024)

The XRISM/Resolve View of the Fe K Region of Cyg X-3

  • XRISM Collaboration,
  • Marc Audard,
  • Hisamitsu Awaki,
  • Ralf Ballhausen,
  • Aya Bamba,
  • Ehud Behar,
  • Rozenn Boissay-Malaquin,
  • Laura Brenneman,
  • Gregory V. Brown,
  • Lia Corrales,
  • Elisa Costantini,
  • Renata Cumbee,
  • María Díaz Trigo,
  • Chris Done,
  • Tadayasu Dotani,
  • Ken Ebisawa,
  • Megan E. Eckart,
  • Dominique Eckert,
  • Satoshi Eguchi,
  • Teruaki Enoto,
  • Yuichiro Ezoe,
  • Adam Foster,
  • Ryuichi Fujimoto,
  • Yutaka Fujita,
  • Yasushi Fukazawa,
  • Kotaro Fukushima,
  • Akihiro Furuzawa,
  • Luigi Gallo,
  • Javier A. García,
  • Liyi Gu,
  • Matteo Guainazzi,
  • Kouichi Hagino,
  • Kenji Hamaguchi,
  • Isamu Hatsukade,
  • Katsuhiro Hayashi,
  • Takayuki Hayashi,
  • Natalie Hell,
  • Edmund Hodges-Kluck,
  • Ann Hornschemeier,
  • Yuto Ichinohe,
  • Manabu Ishida,
  • Kumi Ishikawa,
  • Yoshitaka Ishisaki,
  • Jelle Kaastra,
  • Timothy Kallman,
  • Erin Kara,
  • Satoru Katsuda,
  • Yoshiaki Kanemaru,
  • Richard Kelley,
  • Caroline Kilbourne,
  • Shunji Kitamoto,
  • Shogo Kobayashi,
  • Takayoshi Kohmura,
  • Aya Kubota,
  • Maurice Leutenegger,
  • Michael Loewenstein,
  • Yoshitomo Maeda,
  • Maxim Markevitch,
  • Hironori Matsumoto,
  • Kyoko Matsushita,
  • Dan McCammon,
  • Brian McNamara,
  • François Mernier,
  • Eric D. Miller,
  • Jon M. Miller,
  • Ikuyuki Mitsuishi,
  • Misaki Mizumoto,
  • Tsunefumi Mizuno,
  • Koji Mori,
  • Koji Mukai,
  • Hiroshi Murakami,
  • Richard Mushotzky,
  • Hiroshi Nakajima,
  • Kazuhiro Nakazawa,
  • Jan-Uwe Ness,
  • Kumiko Nobukawa,
  • Masayoshi Nobukawa,
  • Hirofumi Noda,
  • Hirokazu Odaka,
  • Shoji Ogawa,
  • Anna Ogorzalek,
  • Takashi Okajima,
  • Naomi Ota,
  • Stephane Paltani,
  • Robert Petre,
  • Paul Plucinsky,
  • Frederick S. Porter,
  • Katja Pottschmidt,
  • Kosuke Sato,
  • Toshiki Sato,
  • Makoto Sawada,
  • Hiromi Seta,
  • Megumi Shidatsu,
  • Aurora Simionescu,
  • Randall Smith,
  • Hiromasa Suzuki,
  • Andrew Szymkowiak,
  • Hiromitsu Takahashi,
  • Mai Takeo,
  • Toru Tamagawa,
  • Keisuke Tamura,
  • Takaaki Tanaka,
  • Atsushi Tanimoto,
  • Makoto Tashiro,
  • Yukikatsu Terada,
  • Yuichi Terashima,
  • Yohko Tsuboi,
  • Masahiro Tsujimoto,
  • Hiroshi Tsunemi,
  • Takeshi Tsuru,
  • Hiroyuki Uchida,
  • Nagomi Uchida,
  • Yuusuke Uchida,
  • Hideki Uchiyama,
  • Yoshihiro Ueda,
  • Shinichiro Uno,
  • Jacco Vink,
  • Shin Watanabe,
  • Brian J. Williams,
  • Satoshi Yamada,
  • Shinya Yamada,
  • Hiroya Yamaguchi,
  • Kazutaka Yamaoka,
  • Noriko Yamasaki,
  • Makoto Yamauchi,
  • Shigeo Yamauchi,
  • Tahir Yaqoob,
  • Tomokage Yoneyama,
  • Tessei Yoshida,
  • Mihoko Yukita,
  • Irina Zhuravleva,
  • Ryota Tomaru,
  • Tasuku Hayashi,
  • Tomohiro Hakamata,
  • Daiki Miura,
  • Karri Koljonen,
  • Mike McCollough

DOI
https://doi.org/10.3847/2041-8213/ad8ed0
Journal volume & issue
Vol. 977, no. 2
p. L34

Abstract

Read online

The X-ray binary system Cygnus X-3 (4U 2030+40, V1521 Cyg) is luminous but enigmatic owing to the high intervening absorption. High-resolution X-ray spectroscopy uniquely probes the dynamics of the photoionized gas in the system. In this Letter, we report on an observation of Cyg X-3 with the XRISM/Resolve spectrometer, which provides unprecedented spectral resolution and sensitivity in the 2–10 keV band. We detect multiple kinematic and ionization components in absorption and emission whose superposition leads to complex line profiles, including strong P Cygni profiles on resonance lines. The prominent Fe xxv He α and Fe xxvi Ly α emission complexes are clearly resolved into their characteristic fine-structure transitions. Self-consistent photoionization modeling allows us to disentangle the absorption and emission components and measure the Doppler velocity of these components as a function of binary orbital phase. We find a significantly higher velocity amplitude for the emission lines than for the absorption lines. The absorption lines generally appear blueshifted by ∼−500–600 km s ^−1 . We show that the wind decomposes naturally into a relatively smooth and large-scale component, perhaps associated with the background wind itself, plus a turbulent, denser structure located close to the compact object in its orbit.

Keywords